

Tris(2,6-diphenylbenzyl)amine (TDA) and tris(2,6-diphenylbenzyl)phosphine (TDP) with unique bowl-shaped structures: synthetic application of functionalized TDA to chemoselective silylation of benzylic alcohols

Motoi Naiki, Seiji Shirakawa, Kana Kon-i, Yuichiro Kondo and Keiji Maruoka*

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan Received 10 May 2001; accepted 8 June 2001

Abstract—A new strategy for obtaining the formal steric hindrance of tertiary amines by remote steric factors is described by designing the bowl-shaped, structurally unique tris(2,6-diphenylbenzyl)amine (TDA). In addition to its structural uniqueness, TDA possesses the rich electronic atmosphere derived from three 2,6-diphenylbenzyl moieties, thereby allowing the chemoselective silylation of benzylic alcohols preferentially over other alcohols based on the effective aromatic π , π interaction. This approach of preparing TDA is also applicable to the new synthesis of tris(2,6-diphenylbenzyl)phosphine (TDP). © 2001 Elsevier Science Ltd. All rights reserved.

Tertiary amines are known to abstract acidic protons from various organic substrates including acids, phenols, and carbonyl compounds possessing acidic α -protons. By combining use of trialkylsilyl halides or triflates, tertiary amines can also be utilized as bases for the silylation of alcohols, phenols, carbonyl compounds, etc. by abstracting these acidic α -protons. Among various tertiary amines, triethylamine is the most familiar. Sterically more hindered diisopropylethylamine and

1,2,2,6,6-pentamethylpiperidine⁴ might be useful for the selective silylation to protect several functional groups. However, preparation of more hindered tertiary amines seems troublesome due to the increasingly difficult introduction of bulky alkyl moieties on the nitrogen atom.⁵ Accordingly, we are interested in the possibility of designing a bowl-shaped tertiary amine of type 1 to obtain formal steric hindrance by remote steric factors, as shown in Scheme 1. Reported herein is the design of

Scheme 1.

Keywords: tertiary amine; steric hindrance; chemoselectivity; silylation; phosphine.

* Corresponding author. Tel./fax: +00 81 75 753 4041; e-mail: maruoka@kuchem.kyoto-u.ac.jp

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)01019-X

such a bowl-shaped, structurally unique tris(2,6-diphenylbenzyl)amine (TDA), which may also exhibit the eminent electronic effect by rich aromatic rings derived from three 2,6-diphenylbenzyl moieties.^{6,7} This characteristic feature led us to illustrate the synthetic application to the chemoselective silylation of benzylic alcohols.

We conveniently synthesized TDA from commercially available 2-chloro-6-phenyltoluene (2) in the three-step sequence shown in Scheme 2. Thus, reaction of 2-chloro-6-phenyltoluene (2) in ether with an ethereal solution of PhMgBr (1.4 equiv.) in the presence of 5 mol% NiCl₂(dppe) under reflux for 16 h afforded 2,6-diphenyltoluene 3 in 87% yield,⁸ which was then treated with NBS (1.2 equiv.) in cyclohexane under the influence of 5 mol% (PhCOO)₂ under reflux for 2 h to furnish 2,6-diphenylbenzyl bromide 4 in 86% yield.⁹ This bromide 4 was heated with aqueous NH₃ (0.33 equiv.) in acetonitrile at 55°C for 16 h to give the desired TDA 1 in 74% yield [55% overall yield from 2-chloro-6-phenyltoluene].

The primary structure of TDA was determined by single-crystal X-ray diffraction analysis, as shown in Fig. 1,¹⁰ suggesting the existence of an appropriate molecular pocket on the nitrogen atom.

The synthetic application of the bowl-shaped TDA is illustrated by the chemoselective silylation of benzylic alcohols in the presence of structurally similar alcohols.¹ Among various silvl ethers, the tertbutyldimethylsilyl ether has become one of the most popular silyl protective groups in organic synthesis, 11 because it is approximately ten⁴ times more stable to basic hydrolysis than the trimethylsily groups. It is easily introduced by using a variety of reagents with the advantage of being quite stable to a variety of organic reactions, and is readily removed under conditions that do not attack other functional groups. Treatment of tert-BuMe₂SiOTf in CH₂Cl₂ with Et₃N or pyridine at room temperature for 30 min, and subsequent exposure of a mixture of 1 equiv. each of 1-phenyl-1-pentanol (5) and 1-phenyl-3-heptanol (6) at -78°C for 1 h gave rise to two different tert-butyldimethylsilyl ethers 7 and 8 in a ratio of 34:66-44:56 (72-88% yields). Switching tertiary amine bases from NEt₃ or pyridine to sterically more hindered i-Pr₂NEt and 1,2,2,6,6-pentamethylpiperidine afforded silyl ethers **7** and **8** in a ratio of 43:57–42:58, respectively (86–89% yields). In marked contrast, however, use of bowl-shaped TDA as amine base for *tert*-butyldimethylsilylation produced a 78:22 mixture of **7** and **8** (73% yield), although structurally similar

Scheme 2.

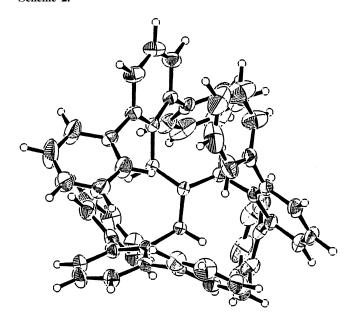


Figure 1. ORTEP diagram of TDA.

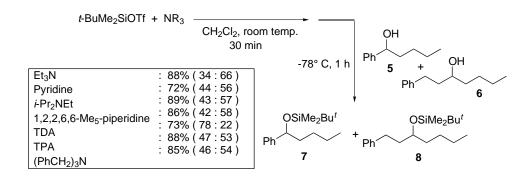


Table 1. Chemoselective tert-butyldimethylsilylation of two different alcohols in the presence of several amine bases^a

Entry	Amine	Alcohol		% Yield	Ratiob
		R^1	\mathbb{R}^2		
1	TDA	Ph	CH ₂ CH ₂ Ph	73	78:22
2	TDA	Ph	Cyclo-C ₆ H ₁₁	69	91:9
3	i-Pr ₂ NEt		5 0 11	90	47:53
4	TDĀ	β-Naphthyl	CH ₂ CH ₂ Ph	67	82:18
5	TPA		2 2	92	52:48
6	(PhCH ₂) ₃ N			84	47:53
7	TDA	CH=CHPh	CH_2CH_2Ph	98	56:44

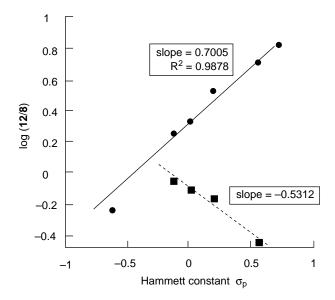
^a The chemoselective *tert*-butyldimethylsilylation of two different alcohols was carried out in the presence of a mixture of *tert*-BuMe₂SiOTf and amine (prepared by addition of *tert*-BuMe₂SiOTf in CH₂Cl₂ to amine base at room temperature for 30 min) at −78°C for 1 h.

Table 2. Substituent effect on the chemoselective *tert*-butyldimethylsilylation of two different alcohols 11 and 6 in the presence of bowl-shaped TDA or *i*-Pr₂NEt^a

Entry	p-Substituent (X)	% Yield (ratio)b with TDA	% Yield (ratio) ^b with <i>i</i> -Pr ₂ NEt	
1	NMe ₂	86 (49:51)		
2	CH ₃	73 (73:27)	88 (48:52)	
3	Н	73 (78:22)	89 (43:57)	
4	Br	72 (85:15)	89 (40:60)	
5	CF ₃	78 (88:12)	90 (28:72)	
6	CN	79 (91:9)		

^a The chemoselective *tert*-butyldimethylsilylation of two different alcohols **11** and **6** was carried out in the presence of a mixture of *tert*-BuMe₂SiOTf and amine (prepared by addition of *tert*-BuMe₂SiOTf in CH₂Cl₂ to TDA or *i*-Pr₂NEt at room temperature for 30 min) at -78°C for 1 h.

tris(2-phenylbenzyl)amine (TPA) and tribenzylamine resulted in low chemoselectivity (46:54–47:53 in 85–88% yields) (Scheme 3).


Other selected examples included in Table 1 clearly demonstrate the effectiveness of bowl-shaped TDA in the recognition and discrimination of benzylic alcohols preferentially based on the aromatic π , π stabilization between these alcohols and benzene rings of TDA, thereby allowing the chemoselective functionalization of benzylic alcohols. Discrimination of structurally similar 1-phenylpentanol and 1-cyclohexylpentanol appears feasible (entry 2). 1- β -Naphthylpentanol exhibits better discrimination ability than 1-phenyl-1-pentanol (entries

4–6). However, the *trans*-2-phenylethenyl group is less effective (entry 7).

The existence of hypothetical aromatic π,π interaction between benzylic alcohols and benzene rings of TDA was verified by examining the *para*-substituent effect on the benzylic portions of alcohol 11 for the chemoselective *tert*-butyldimethylsilylation of two different alcohols 11 and 6, as shown in Table 2. Namely, by plotting the logarithm of the observed discrimination ratios of silyl ethers 12 and 8, obtained by chemoselective silylation, versus the Hammett substituent constant (σ) for the particular *para*-substituent in 11, we successfully observed a linear relationship as illustrated in Fig. 2.¹²

^b The ratios of 9 and 10 were determined by GLC or ¹H NMR analyses.

^b The ratios of 12 and 8 were determined by GLC analysis.

Figure 2. Plot of chemoselectivity versus Hammett constant σ_p . Plots (\bullet) and (\blacksquare) were obtained with TDA and *i*-Pr₂NEt, respectively.

CH₂Br
Ph Mg (1.2 eq)
$$\stackrel{\text{CH}_2\text{MgBr}}{=}$$
 Ph Ph Ph $\stackrel{\text{Ph}}{=}$ Ph Ph $\stackrel{\text{Ph}}{=}$ Ph $\stackrel{\text{Ph}}{=}$ Ph $\stackrel{\text{Ph}}{=}$ Ph $\stackrel{\text{CH}_2\text{NgBr}}{=}$ $0 \sim 25 \, ^{\circ}\text{C}$ $\stackrel{\text{CH}_2\text{NgBr}}{=}$ 0

Scheme 4.

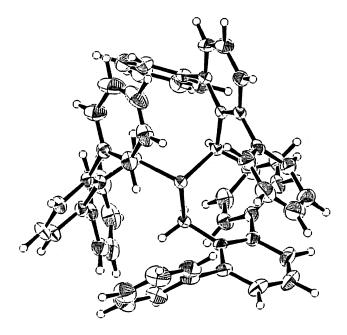


Figure 3. ORTEP diagram of TDP.

It should be noted that the direction of slopes derived from TDA and *i*-Pr₂NEt are totally opposite, as indicated in Fig. 2.

It seems clear that our approach for designing the bowl-shaped tertiary amine TDA is also applicable to the new synthesis of a phosphino analogue, tris(2,6-diphenylbenzyl)phosphine (TDP), as shown in Scheme 4. Since tertiary phosphines play an important role as phosphine ligands in the synthesis of transition-metal catalysts, 13 the structurally unique, bowl-shaped TDP has potential for numerous synthetic applications in transition-metal chemistry (Fig. 3).

Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan.

References

- 1. Weber, W. P. Silicon Reagents for Organic Synthesis; Springer-Verlag: Berlin, 1983.
- (a) Brown, H. C.; Dhar, R. K.; Ganesan, K.; Singaram, B. J. Org. Chem. 1992, 57, 499; (b) Brown, H. C.; Dhar, R. K.; Ganesan, K.; Singaram, B. J. Org. Chem. 1992, 57, 2716; (c) Fleming, I.; Paterson, I. Synthesis 1979, 736; (d) Jansen, A. B. A.; Rusell, T. J. J. Chem. Soc. 1965, 2127; (e) Kruse, C. G.; Broekhof, N. L. J. M.; van der Gen, A. Tetrahedron Lett. 1976, 1725; (f) Corey, E. J.; Snider, B. B. J. Am. Chem. Soc. 1972, 94, 2549.
- (a) Fernandez, I.; Khiar, N.; Llera, J. M.; Alcudia, F. J. Org. Chem. 1992, 57, 6789; (b) Kozikowski, A. P.; Wu, J.-P. Tetrahedron Lett. 1987, 28, 5125; (c) Brown, H. C.; Dhar, R. K.; Bakshi, R. K.; Pandiarajan, P. K.; Singaram, B. J. Am. Chem. Soc. 1989, 111, 3441; (d) Tanabe, Y.; Mukaiyama, T. Chem. Lett. 1986, 1813.
- (a) Corey, E. J.; Barton, A. E.; Clark, D. A. J. Am. Chem. Soc. 1980, 102, 4278; (b) Sommer, H. Z.; Lipp, H. I.; Jackson, L. L. J. Org. Chem. 1971, 36, 824; (c) Hall, Jr., H. K. J. Am. Chem. Soc. 1957, 79, 5444.
- Guziec, Jr., F. S.; Torres, F. F. J. Org. Chem. 1993, 58, 1604.
- Reaction bowls: (a) Goto, K.; Tokitoh, N.; Okazaki, R. Angew. Chem., Int. Ed. Engl. 1995, 34, 1124; (b) Sasaki, T.; Goto, K.; Tokitoh, N.; Okazaki, R. J. Org. Chem. 1996, 61, 2924; (c) Sasaki, T.; Goto, K.; Okazaki, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 2223; (d) Goto, K.; Holler, M.; Okazaki, R. J. Am. Chem. Soc. 1997, 119, 1460.
- Concave reagents: (a) Luning, U.; Muller, M.; Gelbert, M.; Peters, K.; von Schnering, H. G.; Keller, M. Chem. Ber. 1994, 127, 2297; (b) Hagen, M.; Luning, U. Chem. Ber./Recueil 1997, 130, 231; (c) Ross, H.; Luning, U. Tetrahedron Lett. 1997, 38, 4539; (d) Lofflwe, F.; Hagen, M.; Luning, U. Synlett 1999, 1826.
- Tamao, K.; Sumitani, K.; Kiso, Y.; Zembayashi, M.; Fujioka, A.; Kodama, S.; Nakajima, I.; Minato, A.; Kumada, M. Bull. Chem. Soc. Jpn. 1976, 49, 1958.

- 9. Horner, L.; Winkelmann, E. H. Angew. Chem. 1959, 71, 349
- 10. Crystal data: $C_{57}H_{45}N\cdot CH_2Cl_2$, M=828.92, orthorhombic, a=36.763(4), b=11.129(3), c=21.394(5) Å³, U=8753(2) Å, T=293 K, space group Pbcn (no. 60), Z=8, $\mu(Mo~K_{\infty})=1.89~cm^{-1}$, 10974 reflections measured, 10970 unique ($R_{\rm int}=0.363$), 10049 reflections were used for calculation. Refinement converged with $R_1=0.056$ and $R_{\rm w}=0.064~[w=1/\sigma^2(F_{\rm o})]$. The crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (e-mail: deposit@ccdc.cam.ac.uk) as CCDC 152190.
- 11. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd edn; John Wiley & Sons: New York,

- 1999; pp. 372-453.
- (a) McDaniel, D. H.; Brown, H. C. J. Org. Chem. 1958, 23, 420; (b) Lo, M. M.-C.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 10270; (c) Wong, H. L.; Tian, Y.; Chan, K. S. Tetrahedron Lett. 2000, 41, 7723 and references cited therein.
- (a) Collman, J. P.; Hegedus, L. S. Principles and Applications of Organotransition Metal Chemistry; University Science Books: California, 1980; (b) Davies, S. G. Organotransition Metal Chemistry. Applications to Organic Synthesis; Pergamon Press: Oxford, 1982; (c) Harrington, P. J. Transition Metals in Total Synthesis; John Wiley & Sons: New York, 1990.